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Quaternions 
Math-c has built-in quaternions operations with the use of operators. Math-c detect a quaternion 

element any vector of size 1x4 or 4x1 when applying the operator "*" or "^" and execute the 

quaternion multiplication, as a linear vector multiplication can not be done between vectors of 

size 4x1 or between vectors of size 1x4. 

 

Operators and functions 
 

U * V operator 
Complex base algebra operator or CB product. 

Its a experimental algebra that can be an operation complementary to the quaternion 

multiplication(quat product). This has a different structure to set the x,y and z. 

 

U ^ V operator 
Quaternion operator. 

It is quaternion multiplication. 

 

U˚ operator 
Vector conjugate, it is need to conjugate each element of vector is done with the function cj(U). 

 

cinv(x) 
CB inverse, is equal to the vector divided by the square magnitude. It is same quaternion inverse 

except for the signs. 

  

 

 

 



qinv(x) 
Quaternion inverse, is equal to the vector conjugate divided by the square magnitude.For the 

complex version check the Complex Quaternion section. 

 

 

det(x) 
Complex quaternion "determinant" is defined as. 

 

 

QuaternionMode(a) 
Set the complex quaternion multiplication mode. Parameter "a" is 0 to set the complex 

multiplication in default mode and parameter "a" to 1 to set the complex multiplication to Dual 

mode.(explained in Complex Quaternion section) 

 

y = unitV(x) 
return a scalar or quaternion of magnitude 1 

x-> scalar value or quaternion 

returns 

y -> a scalar or quaternion with magnitude 1 

 

 

 

 

 

 

 

 

 

 



CB Algebra Overview 
The CB vector has a different structure than the traditional quaternion and is not associative, that 

means, U*(V*S) ≠ (U*V)*S, but can be transform to associative U * V = (x0*V)^(U*x0) (Note: x0=[1 

0 0 0]) 

For more information can be found in CBALGEGRA 

Example to rotate a vector V=(1.2 3.4 4.2) in a plane with Normal (0.729 0.5607 0.3925) at 60 

degrees. 

with CBAlgebra: 

>>> θ=cos(30*π/180) <-> sin(30*π/180)*[-0.3925  0.5607  0.7290]       
              θ = [0.866025  -0.19625  0.28035  0.3645]                       
        >>> V=[1.2 3.4 4.2 0];                                                
        >>> V*θ*θ                                                             
             ans = [3.09838  0.698263  4.53328  0]                            
 

with classic Quaternions: 

>>> q=cos(30*π/180) <-> sin(30*π/180)*[0.7290  0.5607  0.3925]        
              q = [0.866025  0.3645  0.28035  0.19625]                        
        >>> V=[0 1.2 3.4 4.2];                                                
        >>> q^V^q˚                                                            
             ans = [-1.11022e-16  3.09838  0.698263  4.53328]               

 

note the different coordinates position and signs. 

 One of the advantages of using the CB structure is that the same order in complex number and is 

easier to convert it to 2D(XY plane) and vice versa; because the third and fourth component are 

zeros in 2D CB product, like the complex numbers. 

 

Example inverse kinematics 2 DOF in three dimensions without trigonometric 

functions. 
Suppose two bones chain, one of magnitude k1=3 and other bone magnitude k2=5, the target 

position is r=(2 4 3 0), so d=|r|²=[29 0 0 0]; in plane normal nx=0.733333  ny=0.133333  nz=-

0.666667. 

Note: the vector (nx,ny,nz) is orthogonal to r; and x0=[1 0 0 0] 

First the equations; 

This can be solved with 2 simultaneous quaternion equations. The first equation is: 

 

and then multiplying by r. 

 



The second equation is the following: 

 

where the dot product part(first element of vector) is solved with the cosine law of triangle 

created (k1,k2,√(d(0))); 

The second to fourth elements are the "cross" product(cross with the sign change and order) and 

A is the Area created in the triangle (k1,k2,d) solved with the heron formula. 

 

Then we transform the equations to Quat products(Bn*x0 = Bn because the forth component of 

Bn is zero) 

[equation 3] 

 

Which can be represented by a Hypervector: 

 

And the solution is: 

 

Note: The general solution for 2 quaternion equations of two variables is: 

 

 

 

 

 



After we have the solution equation we can solve the problem in Math-c: 

>>> [k1 k2 r] = [3 5 [2 4 3 0]];                                              
        >>> d=[sumsq(r) 0 0 0];                                                       
        >>> A=heronf(k1,k2,√(d(0)));                                                  
        >>> s=k1^2-k2^2 <-> 4*A*[0.666667  0.133333  0.733333]                        
        >>> B1=0.5*(qinv(x0*r)^d+qinv(x0*r)^s)                                        
             B1 = [-1.11575  2.69858  -0.687605  0]                                
 
        >>> B2=0.5*(qinv(x0*r)^d-qinv(x0*r)^s)                                        
             B2 = [3.11575  1.30142  3.6876  0]                                       
 
To find the second solution, we only have to change the sign of A, and repeat or just the conjugate "s". 
>>> B1=0.5*(qinv(x0*r)^d+qinv(x0*r)^s˚)                                       
             B1 = [2.0123  -0.905473  2.03243  0]                                    
        >>> B2=0.5*(qinv(x0*r)^d-qinv(x0*r)^s˚)                                       
             B2 = [-0.012297  4.90547  0.967568  0]                                  
 
 
For 2D, the equation solution can be easily transformed to complex numbers and solve the complex matrix, example: if 
the target position is r=(4 6), so d=|r|²=52; in plane normal nz=1; in the equation 3, we eliminate the third and forth 
element and the second element become to imaginary part. 

 
 >>> M = [4-6i 4-6i;4-6i -4+6i];                                              
        >>> cD1=[52;3^2-5^2+4i*heronf(3,5,√(52))];                                   
        >>> cD2=[52;3^2-5^2-4i*heronf(3,5,√(52))];                                   
        >>> cB = inv(M)*cD1                                                          
             cB = [3i ;                //solution 1                                  
                  4+3i]                                                            
        >>> cB = inv(M)*cD2                                                          
             cB = [2.76923+1.15385i ;  //solution 2                                  
                  1.23077+4.84615i]                                                
 

 

Quaternions 
There is a lot of documentation available online about, so intros section will discuss the single 

rotation 3d. 

The quaternion rotation(with quaternion structure) is done by the "sandwich" operation in which 

rotate twice the angle specified. 

>>> q=cos(30*π/180) <-> sin(30*π/180)*[0.7290  0.5607  0.3925]        
              q = [0.866025  0.3645  0.28035  0.19625]                        
        >>> V=[0 1.2 3.4 4.2];                                                
        >>> q^V^q˚                                                            
             ans = [-1.11022e-16  3.09838  0.698263  4.53328]               

 

But is possible to do single rotation specifying the first value in input vector as in the example 

below with 60 degrees(without the half angle): 

>>> q=cos(60*π/180) <-> sin(60*π/180)*[0.7290  0.5607  0.3925]        
              q = [0.5  0.631333  0.48558  0.339915]                         
        >>> V=[0 1.2 3.4 4.2];                                                
        >>> V(0)=-dot(q(1:3),V(1:3))/(1+q(0));                                
        >>> V                                                                 



             ans = [-2.55748  1.2  3.4  4.2]                                
        >>> V^q  ̊                                                             
             ans = [2.55748  3.09835  0.698162  4.53316]                    
  

 

We can check the V(0) maintain its value(it is where the equation came from), except for the sign, 

it like it has an additional imaginary axis, but the explanation will be for the reader. The big issue 

with this rotation is the singularity the angle is 180 degrees, but this singularity can be eliminated 

if we multiplied by (1-q(0))/(1-q(0)) in a matrix form of the result, and this operation set the 

rotation in terms of normals components of the quaternion, but doesn't solve anything, which is 

the normal of quaternion [-1 0 0 0]?. 

 

Complex Quaternions 
The complex quaternions can be done in two ways: 

Default mode 
This is set with the function QuaternionMode(0) and it is the default mode. 

The Complex multiplication in this mode is 

 

     

also affects the qinv (to solve B only)function the complex quaternion inverse is 

 

 

also the det function for a complex quaternion is: 

 

 

Examples:  

to solve the inverse kinematic above using complex quaternions in the default mode, it is solved 

like: 

Suppose two bones chain, one of magnitude k1=3 and other bone magnitude k2=5, the target 

position is r=(2 4 3), so d=|r|^2=29; in plane normal nx=0.733333  ny=0.133333  nz=-0.666667. 

>>> [k1 k2 r] = [3 5 [2 4 3 0]];                                              
        >>> d=[sumsq(r) 0 0 0];                                                       
        >>> A=heronf(k1,k2,√(d(0)));                                                  



        >>> s=k1^2-k2^2 <-> 4*A*[0.666667  0.133333  0.733333]                        
        >>> cR=(x0*r)+1i*(x0*r);                                                      
        >>> cD=s+1i*d;                                                             
 
        >>> cB=qinv(cR)^cD                                                            
             cB = [-1.11575+3.11575i  2.69858+1.30142i  -0.687605+3.6876i  0]        //solution 1 
        >>> cD=s˚+1i*d;                                                               
        >>> cB=qinv(cR)^cD                                                            
             cB = [2.0123-0.012297i  -0.905473+4.90547i  2.03243+0.967568i  0]       //solution 2 

 

Quaternion Dual mode 
This is set with the function QuaternionMode(1) and this mode is available only in the current 

environment scape, for example if you want to continue using this mode in a function, you have to 

select this mode inside the function too. 

The Complex multiplication in this mode is: 

 

 

also affects the qinv function the complex quaternion inverse is: 

 

 

some of the uses of dual quaternions is for rotation and translation, also can be used to solve 3 

simultaneous equations with 3 unknown variables. 


