Math-c Documentation

Operators

For the use of operator in quaternions, check the quaternion section.
$a+b$
sum
a -> scalar,string or matrix
b -> scalar,string or matrix
$a-b$
subtraction
a -> scalar,string or matrix
b -> scalar,string or matrix
a.*b
$a \bullet b \quad / / t h e ~ o p e r a t o r ~ i s ~ a v a i l a b l e ~ i n ~ s o m e ~ k e y b o a r d s ~ a s ~(A L T+8) ~$
multiplication for each element of the matrix a to the same position of the matrix b(element by element multiplication)
a -> scalar or matrix
b -> scalar or matrix
$a^{*} b$
linear multiplication matrix
a -> scalar or matrix
b -> scalar or matrix
a / b
division
a -> scalar
b-> scalar
a ./b
division for each element of the matrix a to the same position of the matrix b(element by element division)
a -> scalar or matrix
b -> scalar or matrix
a \% b
modulus, returns the remainder of the division a / b (a an b can be float numbers)
a -> scalar
b-> scalar
a.^ b
power for each element of the matrix a to the same position of the matrix b(element by element power)
a -> scalar or matrix
b -> scalar or matrix
$a^{\wedge} b$
power a to b
a -> scalar
b-> scalar
!a
not a , of is a is 0 return 1, else return 0
a -> scalar
~a
bitwise not
a -> scalar
a° //the operator is available in some keyboards as (ALT+K)
Conjugate
a -> scalar, vector or matrix
a'
Transpose and conjugate if is a matrix, and for a scalar only conjugate
a -> scalar, vector or matrix
a || b
or compare
a -> scalar
b -> scalar
$a>=b$
equal or greater than compare
a -> scalar
b -> scalar
$a<=b$
equal or less than compare
a -> scalar
b -> scalar
$a>b$
greater than compare
a -> scalar
b -> scalar
$a<b$
less than compare
a -> scalar
b-> scalar
$\mathrm{a}==\mathrm{b}$
equal compare
a -> scalar,string or matrix
b -> scalar,string or matrix
a ! = b
not equal compare
a -> scalar,string or matrix
b -> scalar,string or matrix
a \& \& b
and compare
a -> scalar
b -> scalar
$y=\operatorname{and}(a, b)$
$y=a \& b$
bitwise and
a -> integer value
b-> integer value.
returns
y-> bitwise and, if a or b are not integer, the decimals are truncated to do the operation.
$y=\operatorname{or}(a, b)$
$y=a \mid b$
bitwise or
a -> integer value
b-> integer value.
returns
y-> bitwise or, if a or b are not integer, the decimals are truncated to do the operation.
$y=\operatorname{xor}(a, b)$
$y=a^{\wedge \wedge} b$
bitwise xor
a -> integer value
b -> integer value.
returns
y-> bitwise xor, if a or b are not integer, the decimals are truncated to do the operation.
$a \ll b$
shift a, b times to the left
a -> integer value
b-> integer value.
$a \gg b$
shift a, b times to the right
a -> integer value
b -> integer value.

Merge operators

A <-> B
Join two matrices horizontally, must have the same number of rows.
examples:
>>> $M=\left[\begin{array}{ll}7 & 5 ; 245\end{array}\right]$
M $=[754$;
$245]$
>>> D $=[8 ; 9]$
$\mathrm{D}=[8$;
9]
>>> M <-> D
ans $=[7548$;
$2459]$
>>> $\mathrm{a}=7 ; \quad$ //scalar and vector

```
>>> g = [lll
>>> a <-> g
ans =[7% 194];
```

$A<1>B$
Join two matrices vertically, must have the same number of cols. B will be added to bottom A examples:
>>> $\mathrm{M}=\left[\begin{array}{llll}7 & 5 & 4 & 2 \\ \text { L }\end{array}\right]$
M = [754;
$245]$
>>> D = [2 296 6
>>> M <-> D
ans $=[754$;
245 ;
$296]$
>>> $\mathrm{a}=7 ;$
>>> $\mathrm{g}=[5 ; 2 ; 9] ; \quad / /$ scalar and vector
>>> $\mathrm{a}<1>\mathrm{g}$
ans $=[7$;
5
2;
9]

Assignment operators

$y+=x$
Addition assignment, equal to $y=y+x$
$y-=x$
subtraction assignment, equal to $y=y-x$
$y^{*}=x$
Linear multiplication assignment, equal to $y=y^{*} x$
$y \bullet=x$
Multiplication assignment, equal to $\mathrm{y}=\mathrm{y} \bullet \mathrm{x}$
$y /=x$
Division assignment, equal to $y=y / x$
$y \%=x$
Module assignment, equal to $y=y \% x$

